If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2-40y-45=0
a = 5; b = -40; c = -45;
Δ = b2-4ac
Δ = -402-4·5·(-45)
Δ = 2500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2500}=50$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-50}{2*5}=\frac{-10}{10} =-1 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+50}{2*5}=\frac{90}{10} =9 $
| 16(4x+1)+7x+9(x-3)=4 | | 6n^2+70n-24=0 | | 34-7x+9=56 | | (2x+3)/2=(x-1)/5 | | 7/9m-3=17 | | 4x^2+28+24=0 | | 6=m÷7-3 | | .25a=-18 | | 1300x1=450 | | -2(y+7)=20 | | -a/25=-8 | | 294÷x=-14 | | -a/25=88 | | u+5.8=9.19 | | (2x-3)(x+40)=0 | | y+1.46=4.54 | | w-4.4=9.35 | | -1(2q+13)=7 | | 5-(-2-8m)=10+5m | | 15x+4+37+84=180 | | v-18=-14 | | x+9/12=(-2x-1/2)/3 | | 6(×-6)+6=8x-10 | | y/7+2=-9 | | 2m+15=9 | | 10x+5+85+30=180 | | 40x^2+6x-1=0 | | 5-6=2(x+5) | | 0=5760/x^2+0.9 | | 14y-9y=42.25 | | 16x-6+45+45=180 | | -46=3x=7x |